A Note on the Eigenvalues of Real Symmetric Matrices BB^T

Yin,Daijun*

College of Mathematics and Science, Xinjiang Education Institute, Urumgi, Xinjiang, 830063, China

Abstract: We discuss the eigenvalues of real symmetric matrices, especially focus on the eigenvalues of matrix BB^T where B expresses the adjacency relation between two parts of a semiregular bipartite graph. Based on this, the existence of two kinds of (r, k)-semiregular bipartite graphs are excluded.

Keywords: Real symmetric matrices; Eigenvalues; Semiregular bipartite graph

DOI: 10.62639/sspjinss11.20240104

1. Preliminaries

Let G = (V(G), E(G)) be undirected simple graph on \mathcal{N} vertices with adjacency matrix A = A(G). Denote by $\lambda_1, \lambda_2, \cdots$, λ_t all the distinct eigenvalues of A with multiplicities m_1, m_2, \cdots, m_t ($\sum_{i=1}^t m_i = n$), respectively.

These eigenvalues are also called the eigenvalues of G. All the eigenvalues together with their multiplicities are called the spectrum of G denoted by Spec(G) = $\{[\lambda_1]^{m1}, [\lambda_2]^{m2}, \dots, [\lambda_l]^{mt}\}^{[1]}$.

Bipartite graphs with few distinct eigenvalues have nice combinatorial properties and many studies on it are somehow relevant to the combinational designs, such as [4, 5, 6]. Most of the studies focus on the spectral characterization of regular or semiregular bipartite graphs with five distinct eigenvalues [2, 3]. Here we discuss the non-existence of some semiregular bipartite graphs with five distinct eigenvalues in terms of the properties of real symmetric matrices BB^T .

Lemma 1.1. Let M be a symmetric matrix of size n, having constant diagonal and constant row sums ω , and spectrum $\{\omega^1, \sigma^1, 0^{n-2}\}$, with $\omega=0$; then n is even and (possibly after permuting rows and columns) M can be written as

$$M = \begin{pmatrix} \frac{\omega + \sigma}{n} J_{\frac{n}{2}} & \frac{\omega - \sigma}{n} J_{\frac{n}{2}} \\ \frac{\omega + \sigma}{n} J_{\frac{n}{2}} & \frac{\omega - \sigma}{n} J_{\frac{n}{2}} \end{pmatrix} .$$

Lemma 1.2. Let M be a real symmetric matrix of size n, with spectrum $\{\sigma^m, 0^{n-m}\}$ where $m \ge 1$. Then $M = \sigma(u_1u_1^T + \dots + u_mu_m^T)$ with u_1 , \dots , u_m being the pairwise orthogonal eigenvectors of M with respect to σ

2. Main Results

Theorem 2.1. Connected (r, k)-semiregular bipartite graph with size n_1 , n_2 of each part and spectrum

$$\left\{ \sqrt{rk}, \ \lambda_2^{n_1-2}, \ 0^{n_2-n_1+2}, \ -\lambda_2^{n_1-2}, \ -\sqrt{rk} \right\}$$

does not exist.

(Manuscript NO.: JINSS-24-4-15001)

Corresponding Author

Yin, Daijun (1981-), female, is an associate professor and a doctor of science at Xinjiang Normal College (Xinjiang Education Institute). Her major is applied mathematics and her research direction is algebraic graph theory.

Funding

This work is supported by the Provincial Natural Science Foundation of Xinjiang: "Study on the spectral characterization of graphs with few distinct eigenvalues" (fund project number 2022D01A252).

Proof. Suppose that G is a (r, k)-semiregular bipartite graph with adjacency matrix $A = \begin{pmatrix} O & B \\ B^T & O \end{pmatrix}$. From the spectrum of G we have

$$Spec(BB^{T}) = \{ [rk]^{1}, [\lambda_{2}^{2}]^{n_{1}-2}, [0]^{1} \}.$$

Further,

$$Spec(BB^T - \lambda_2^2 I) := \{ [rk - \lambda_2^2]^1, [-\lambda_2^2]^1, [0]^{n_1-2} \}.$$

Recall that $BB^T - \lambda_2^2$ / is a symmetric matrix of size n_1 , having constant diagonal $r - \lambda_2^2$ and constant row sums $rk - \lambda_2^2$. From lemma 1.1 we have

$$BB^{T} - \lambda_{2}^{2} = \begin{pmatrix} \frac{rk - 2\lambda_{2}^{2}}{n_{1}} J_{\frac{n_{1}}{2}} & \frac{rk}{n_{1}} J_{\frac{n_{1}}{2}} \\ \frac{rk}{n_{1}} J_{\frac{n_{1}}{2}} & \frac{rk - 2\lambda_{2}^{2}}{n_{1}} J_{\frac{n_{1}}{2}} \end{pmatrix}. (1)$$

On the other hand, by taking $f(x) = x(x^2 - \lambda_2^2)$ and from the spectral decomposition of f(A) we get

$$A(A^{2} - \lambda_{2}^{2} I) = \rho(\rho^{2} - \lambda_{2}^{2}) P_{1} - \rho(\rho^{2} - \lambda_{2}^{2}) P_{2}$$

$$= \frac{\rho(\rho^{2} - \lambda_{2}^{2})}{n_{1} + \frac{k}{r} n_{2}} \begin{pmatrix} J_{n_{1}} & \sqrt{\frac{k}{r}} J \\ \sqrt{\frac{k}{r}} J & \frac{k}{r} J_{n_{2}} \end{pmatrix} - \frac{\rho(\rho^{2} - \lambda_{2}^{2})}{n_{1} + \frac{k}{r} n_{2}} \begin{pmatrix} J_{n_{1}} & -\sqrt{\frac{k}{r}} J \\ -\sqrt{\frac{k}{r}} J & \frac{k}{r} J_{n_{2}} \end{pmatrix} , \quad (2)$$

and then

$$B(B^TB - \lambda_2^2 I) = (BB^T - \lambda_2^2 I)B = \frac{2\rho(\rho^2 - \lambda_2^2)}{n_1 + \frac{k}{r}n_2} \sqrt{\frac{k}{r}} J = \frac{k(rk - \lambda_2^2)}{n_1} J. \tag{3}$$

We partition V_1 into two equal parts $V_{11} \cup V_{12}$ and correspondingly denote $B = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$ such that each B_i expresses the adjacency relation from V_{1i} to V_2 for i = 1, 2. From (1) and (3) we have

$$\begin{cases} \frac{rk-2\lambda_2^2}{n_1}JB_1 + \frac{rk}{n_1}JB_2 = \frac{k(rk-\lambda_2^2)}{n_1}J_{\frac{n_1}{2}\times n_2} & \text{(i).} \\ \frac{rk}{n_1}JB_1 + \frac{rk-2\lambda_2^2}{n_1}JB_2 = \frac{k(rk-\lambda_2^2)}{n_1}J_{\frac{n_1}{2}\times n_2} & \text{(ii).} \end{cases}$$

Assume that

$$JB_1 = \mathbf{e}_{\frac{n_1}{2}} \otimes (p_1, p_2, \cdots, p_{n_2}), \ JB_2 = \mathbf{e}_{\frac{n_1}{2}} \otimes (q_1, q_2, \cdots, q_{n_2}),$$

where p_i , q_i , respectively, denote the number of vertices in V_{11} and V_{12} that adjacent to $\omega_i \in V_2$, for $i = 1, \dots, n_2$. Clearly, $p_i + q_i = k$. We will give following three claims.

Claim 1: For any $i \in \{1, \dots, n_2\}, p_i \neq 0$ and $q_i \neq 0$.

If $p_i = 0$, by comparing the *i*th column of both sides of equality (*i*) we have

$$\frac{rk}{n_1}q_i = \frac{k(rk - \lambda_2^2)}{n_1}.$$

Note that $\lambda_2^2 = \frac{n_1 r - rk}{n_1 - 2}$, then $q_i = k - \frac{n_1 - k}{n_1 - 2}$. Since q_i is an integer and $k \ge 2$, it forces to have k = 2, then $1 = q_i = k = 2$ which is a contradiction. If $q_i = 0$, we similarly deduce a contradiction from equality (ii).

Claim 2: For any $i, j \in \{1, \dots, n_2\}, p_i = p_i$ and $q_i = q_i$.

Suppose that there are $i, j \in \{1, \dots, n_2\}$ such that $p_i \neq p_j$ and correspondingly, $q_i \neq q_j$ from (i) and (ii). Furthermore,

from the ith and jth columns of equality (i) and (ii) we get

$$\frac{rk - 2\lambda_2^2}{n_1}(p_i - p_j) = \frac{rk}{n_1}(q_j - q_i), \quad \frac{rk}{n_1}(p_i - p_j) = \frac{rk - 2\lambda_2^2}{n_1}(q_j - q_i).$$

Then we obtain that

$$\frac{rk - 2\lambda_2^2}{rk} = \frac{rk}{rk - 2\lambda_2^2} \implies \lambda_2^2 = rk.$$

A contradiction.

Claim 3: For any $i \in \{1, \dots, n_2\}, p_i = p_j = \frac{k}{2}$.

It is known that $p_1 = \cdots = p_{n_2} = p$ and $q_1 = \cdots = q_{n_2} = q$ from claim 2. So we have $JB_1 = pJ$, $JB_2 = qJ$ and from (i), (ii)

$$\frac{rk - 2\lambda_2^2}{n_1} pJ + \frac{rk}{n_1} qJ = \frac{rk}{n_1} pJ + \frac{rk - 2\lambda_2^2}{n_1} qJ, \ \Rightarrow \ \frac{-2\lambda_2^2}{n_1} p = \frac{-2\lambda_2^2}{n_1} q.$$

Thus $p = q = \frac{k}{2}$ since $\lambda_2^2 \neq 0$.

So far, we assert that both $G[V_{11} \cup V_2]$ and $G[V_{12} \cup V_2]$ are $(r, \frac{k}{2})$ -semiregular bipartite graphs. On the other hand, from

$$\begin{pmatrix} B_1B_1^T & B_1B_2^T \\ B_2B_1^T & B_2B_2^T \end{pmatrix} = BB^T = \begin{pmatrix} \frac{rk - 2\lambda_2^2}{n_1}J_{\frac{n_1}{2}} + \lambda_2^2I & \frac{rk}{n_1}J_{\frac{n_1}{2}} \\ \frac{rk}{n_1}J_{\frac{n_1}{2}} & \frac{rk - 2\lambda_2^2}{n_1}J_{\frac{n_1}{2}} + \lambda_2^2I \end{pmatrix}$$

we get

$$B_1 B_1^T = B_2 B_2^T = \frac{rk - 2\lambda_2^2}{n_1} J_{\frac{n_1}{2}} + \lambda_2^2 I.$$

Clearly, λ_2^2 is integer because rk is integer and $\Phi_A(G;x)$ is a monic polynomial with integer coefficients. We might as well set $\frac{rk-2\lambda_2^2}{n_1}=\frac{r(k-2)}{n_1-2}=\lambda$, then $\lambda_2^2=r-\lambda$. By lemma, both B_1 , B_2 are incidence matrix of $\left(\frac{n_1}{2},\ n_2,\ r,\frac{k}{2},\ \lambda\right)$ -BIBD, and hence $G[V_{11}\cup V_2]$ and $G[V_{12}\cup V_2]$ are the incidence graph of this design. However, $B_1B_2^T=\frac{rk}{n_1}J$ means that any vertex of V_{11} share the same number of neighbours in V_2 with any vertex of V_{12} , which is impossible. It completes our proof.

Theorem 2.2. Connected (r, k)-semiregular bipartite graph with size n_1 , n_2 of each part and spectrum

$$\{\sqrt{rk}, \lambda_2^{n_1-3}, 0^{n_2-n_1+4}, -\lambda_2^{n_1-3}, -\sqrt{rk}\}$$

does not exist.

Proof. Let *G* be a $(\underline{r},\underline{k})$ -semiregular bipartite graph with spectrum $\{\sqrt{rk}, \ \lambda_2^{n_1-3}, \ 0^{n_2-n_1+4}, \ -\lambda_2^{n_1-3}, \ -\sqrt{rk}\}$. Then BB^T has spectrum $\{[rk]^1, [\lambda_2^2]^{n_1-3}, [0]^2\}$. Furthermore, $Spec(BB^T - \lambda_2^2I) = \{[rk - \lambda_2^2]^1, [-\lambda_2^2]^2, [0]^{n_1-3}\}$.

Let $M=BB^T-\lambda_2^2I-\frac{rk-\lambda_2^2}{n_1}J$ be a real symmetric matrix of size n_1 with constant row sum 0 and constant diagonal $r-\lambda_2^2-\frac{rk-\lambda_2^2}{n_1}$, $Spec(M)=\{[-\lambda_2^2]^2,[0]^{n_1-2}\}$. Then from Lemma 1.2,

$$M = -\lambda_2^2 (uu^T + ww^T)$$

where u, w are the orthogonal eigenvectors of M with respect to $-\lambda_2^2$ (and also of BB^T with respect to 0). Suppose that $u = [u_1, \cdots, u_{n_1}]^T$, $w = [w_1, \cdots, w_{n_1}]^T$. Note that $rk + (n_1 - 3)\lambda_2^2 = Tr(BB^T) = n_1r$ so for any $i \in \{1, \cdots, n_1\}$ we have

$$\begin{cases} u_i \sum_{1 \le l \le n_1} u_l + w_i \sum_{1 \le l \le n_1} w_l = 0, \\ u_i^2 + w_i^2 = \frac{1}{-\lambda_2^2} (r - \lambda_2^2 - \frac{rk - \lambda_2^2}{n_1}) = \frac{2}{n_1} \end{cases}$$
 (4)

It is easy to verify that

$$0 = \sum_{i=1}^{n_1} (u_i \sum_{1 \le l \le n_1} u_l + w_i \sum_{1 \le l \le n_1} w_l)$$

= $\sum_{i=1}^{n_1} u_i^2 + \sum_{i=1}^{n_1} w_i^2 + \sum_{i=1}^{n_1} u_i \sum_{l \ne i} u_l + \sum_{i=1}^{n_1} w_i \sum_{l \ne i} w_l$
= $(u_1 + u_2 + \dots + u_{n_1})^2 + (w_1 + w_2 + \dots + w_{n_1})^2$.

Thus $\sum_{i=1}^{n_1}u_i=0$ and $\sum_{i=1}^{n_1}w_i=0$, and hence $u_1^2=u_2^2=\cdots=u_{n_1}^2$, $w_1^2=w_2^2=\cdots=w_{n_1}^2$. It follows that there are exactly $\frac{n_1}{2}$'s u_i equal α and others equal $-\alpha$, and there are exactly $\frac{n_1}{2}$'s w_i equal β and others equal $-\beta$. Also note that $u\perp w$, so it forces to have

$$u = (\alpha \mathbf{e}_{\frac{n_1}{2}}^T, -\alpha \mathbf{e}_{\frac{n_1}{2}}^T)^T, \ w = (\beta \mathbf{e}_{\frac{n_1}{4}}^T, -\beta \mathbf{e}_{\frac{n_1}{4}}^T, \beta \mathbf{e}_{\frac{n_1}{4}}^T, -\beta \mathbf{e}_{\frac{n_1}{4}}^T),$$

and then

$$M = -\lambda_2^2 \begin{pmatrix} (\alpha^2 + \beta^2)J & (\alpha^2 - \beta^2)J & (-\alpha^2 + \beta^2)J & (-\alpha^2 - \beta^2)J \\ (\alpha^2 - \beta^2)J & (\alpha^2 + \beta^2)J & (-\alpha^2 - \beta^2)J & (-\alpha^2 + \beta^2)J \\ (-\alpha^2 + \beta^2)J & (-\alpha^2 - \beta^2)J & (\alpha^2 + \beta^2)J & (\alpha^2 - \beta^2)J \\ (-\alpha^2 - \beta^2)J & (-\alpha^2 + \beta^2)J & (\alpha^2 - \beta^2)J & (\alpha^2 + \beta^2)J \end{pmatrix}.$$

By simply calculating, we have

$$det(xI - M) = x^{n_1 - 2}(x + n_1\lambda_2^2\alpha^2)(x + n_1\lambda_2^2\beta^2),$$

and the nonzero eigenvalue of M is

$$-\lambda_2^2 = -n_1 \lambda_2^2 \alpha^2 = -n_1 \lambda_2^2 \beta^2.$$

Thus $\alpha^2=\beta^2=rac{1}{n_1}$. Recall that $M=BB^T-\lambda_2^2I-rac{rk-\lambda_2^2}{n_1}J$, so we get

$$BB^{T} - \lambda_{2}^{2}I = M + \frac{rk - \lambda_{2}^{2}}{n_{1}}J = \begin{pmatrix} \frac{rk - 3\lambda_{2}^{2}}{n_{1}}J & \frac{rk - \lambda_{2}^{2}}{n_{1}}J & \frac{rk + \lambda_{2}^{2}}{n_{1}}J \\ \frac{rk - \lambda_{2}^{2}}{n_{1}}J & \frac{rk - \lambda_{2}^{2}}{n_{1}}J & \frac{rk + \lambda_{2}^{2}}{n_{1}}J & \frac{rk - \lambda_{2}^{2}}{n_{1}}J \\ \frac{rk - \lambda_{2}^{2}}{n_{1}}J & \frac{rk - \lambda_{2}^{2}}{n_{1}}J & \frac{rk - \lambda_{2}^{2}}{n_{1}}J & \frac{rk - \lambda_{2}^{2}}{n_{1}}J \\ \frac{rk - \lambda_{2}^{2}}{n_{1}}J & \frac{rk - \lambda_{2}^{2}}{n_{1}}J & \frac{rk - \lambda_{2}^{2}}{n_{1}}J & \frac{rk - \lambda_{2}^{2}}{n_{1}}J \end{pmatrix} .$$
 (5)

Now we partition V_1 into four equal parts $V_{11} \cup V_{12} \cup V_{13} \cup V_{14}$ and correspondingly denote $B = (B_1^T, B_2^T, B_3^T, B_4^T)^T$ such that each B_i expresses the adjacency relation from V_{1i} to V_2 for i=1,2,3,4. On the other hand, from the demonstration of theorem we also obtain equality (3). Combining (5) we get following four equalities.

$$\begin{cases} \frac{rk-3\lambda_{2}^{2}}{n_{1}}JB_{1} + \frac{rk-\lambda_{2}^{2}}{n_{1}}JB_{2} + \frac{rk-\lambda_{2}^{2}}{n_{1}}JB_{3} + \frac{rk+\lambda_{2}^{2}}{n_{1}}JB_{4} & (a); \\ \frac{rk-\lambda_{2}^{2}}{n_{1}}JB_{1} + \frac{rk-3\lambda_{2}^{2}}{n_{1}}JB_{2} + \frac{rk+\lambda_{2}^{2}}{n_{1}}JB_{3} + \frac{rk-\lambda_{2}^{2}}{n_{1}}JB_{4} & (b); \\ \frac{rk-\lambda_{2}^{2}}{n_{1}}JB_{1} + \frac{rk+\lambda_{2}^{2}}{n_{1}}JB_{2} + \frac{rk-3\lambda_{2}^{2}}{n_{1}}JB_{3} + \frac{rk-\lambda_{2}^{2}}{n_{1}}JB_{4} & (c); \\ \frac{rk+\lambda_{2}^{2}}{n_{1}}JB_{1} + \frac{rk-\lambda_{2}^{2}}{n_{1}}JB_{2} + \frac{rk-\lambda_{2}^{2}}{n_{1}}JB_{3} + \frac{rk-3\lambda_{2}^{2}}{n_{1}}JB_{4} & (d). \end{cases}$$

As parallel as the proof of theorem , we can also obtain three claims and finally get, for i=1,2,3,4,J $B_i=\frac{k}{4}J$, each $G[V_{1i}\cup V_2]$ is a $(r,\frac{k}{4})$ – semiregular bipartite graph, and furthermore,

$$B_1 B_1^T = B_2 B_2^T = B_3 B_3^T = B_4 B_4^T = \frac{rk - 3\lambda_2^2}{n_1} J + \lambda_2^2 I.$$

Suppose that $\frac{rk-3\lambda_2^2}{n_1}=\lambda$, it is easy to verify that $r-\lambda=\lambda_2^2$. So each $G[V_{1i}\cup V_2]$ is an incidence graph of $(\frac{n_1}{4},\ n_2,\ r,\ \frac{k}{4},\ \lambda)$ -BIBD. Thus a similar contradiction can be deduced from $B_1B_j^T=\frac{rk-\lambda_2^2}{n_1}J$ for j=2,3 and $B_1B_4^T=\frac{rk+\lambda_2^2}{n_1}J$.

References

- [1] D.M. Cvetkovi´c, M. Doob, H. Sachs, Spectra of Graphs: Theory and Applications, 3rd edition, Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995.
- [2] D. Stevanovi'c, Two spectral characterizations of regular, bipartite graphs with five eigenvalues. Linear Algebra Appl., 435(2011):2612-2625.
- [3] E. Ghorbani, Bipartite graphs with five eigenvalues and pseudo designs, J Algebr Comb. (2012) 36:209-221.
- [4] E.R. van Dam, E. Spence, Combinatorial designs with two singular values-I: uniform multiplictive designs. Journal of Combinatorial Theory Series A. (2004)127-142.
- [5] E.R. van Dam, E. Spence, Combinatorial designs with two singular values-II: Partial geometric designs. Linear Algebra Appl., 396 (2005) 303–316.
- [6] E. Ghorbani, Bipartite graphs with five eigenvalues and pseudo designs, J Algebr Comb, 36(2012):209-221.